Three-Dimensional Porous Copper-Graphene Heterostructures with Durability and High Heat Dissipation Performance

نویسندگان

  • Hokyun Rho
  • Seungmin Lee
  • Sukang Bae
  • Tae-Wook Kim
  • Dong Su Lee
  • Hyun Jung Lee
  • Jun Yeon Hwang
  • Tak Jeong
  • Sungmin Kim
  • Jun-Seok Ha
  • Sang Hyun Lee
چکیده

Porous materials have historically been of interest for a wide range of applications in thermal management, for example, in heat exchangers and thermal barriers. Rapid progress in electronic and optoelectronic technology necessitates more efficient spreading and dissipation of the heat generated in these devices, calling for the development of new thermal management materials. Here, we report an effective technique for the synthesis of porous Cu-graphene heterostructures with pores of about 30 μm and a porosity of 35%. Graphene layers were grown on the surfaces of porous Cu, which was formed via the coalescence of molten Cu microparticles. The surface passivation with graphene layers resulted in a thermal conductivity higher than that of porous Cu, especially at high temperatures (approximately 40% at 1173 K). The improved heat dissipation properties of the porous structures were demonstrated by analysis of the thermal resistance and temperature distribution of LED chips mounted on the structures. The effective combination of the structural and material properties of porous Cu-graphene heterostructures provides a new material for effective thermal management of high-power electronic and optoelectronic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production.

Highly efficient hydrogen production can be achieved by three-dimensional (3D) architectures of CdS quantum dots (QDs) incorporated in the porous assembly of marigold-like ZnIn2S4 heterostructures coupled with graphene, leading to an efficient electron transfer between them and the enhancement of the ZnIn2S4 photostability. The as-prepared samples were characterized by X-ray diffraction, electr...

متن کامل

Investigation of pore-scale random porous media using lattice boltzmann method

The permeability and tortuosity of pore-scale two and three-dimensional random porous media were calculated using the Lattice Boltzmann method (LBM). Effects of geometrical parameters of medium on permeability and tortuosity were investigated as well. Two major models of random porous media were reconstructed by computerized tomography method: Randomly distributed rectangular obstacles in a uni...

متن کامل

Numerical investigation of heat transfer in a sintered porous fin in a channel flow with the aim of material determination

Extended surfaces are one of the most important approaches to increase the heat transfer rate. According to the Fourier law, the heat transfer increases by increasing the contact surface of body and fluid. In this study, the effect of heat transfer has been investigated on two sets of engineered porous fins, in which the balls with different materials are sintered together. The fluid flow throu...

متن کامل

RGO and Three-Dimensional Graphene Networks Co-modified TIMs with High Performances

With the development of microelectronic devices, the insufficient heat dissipation ability becomes one of the major bottlenecks for further miniaturization. Although graphene-assisted epoxy resin (ER) display promising potential to enhance the thermal performances, some limitations of the reduced graphene oxide (RGO) nanosheets and three-dimensional graphene networks (3DGNs) hinder the further ...

متن کامل

Possessions of viscous dissipation on radiative MHD heat and mass transfer flow of a micropolar fluid over a porous stretching sheet with chemical reaction

This article presents the heat and mass transfer characteristics of unsteady MHD flow of a viscous, incompressible and electrically conducting micropolar fluid in the presence of viscous dissipation and radiation over a porous stretching sheet with chemical reaction. The governing partial differential equations (PDEs) are reduced to ordinary differential equations (ODEs) by applying suitable si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015